Temperature Effects in Nuclear Quadrupole Resonance Spectroscopy

Search for Nuclear Quadrupole Resonance in an Organic Quantum Magnet

SEARCH FOR NUCLEAR QUADRUPOLE RESONANCE IN AN ORGANIC QUANTUM MAGNET

By
ALLEN R. MAJEWSKI
A QUALIFYING EXAM PAPER PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
2015

Do copies of Hamlet exist embedded in the digits of pi?

I know Vi Hart discussed it, but she may have not been the first to entertain the idea. Not sure. The question is do they digits of pi contain copies of hamlet?

Yes, yes they do. Not just copies of Hamlet, but actually copies of every book imaginable are contained within the digits of pi an infinite number of times.

Using software package pi and simple shell commands,

pastebin of shell commands

I found that any N digit sequence probably appears within the first 10^N digits of pi [1]; moreover, the sequence would appear about 10 times in the first 10^(N+1) digits of pi, 100 times in the first 10^(N+2) digits, etc.

For example, lets say our sequence is the last 4 digits of my phone number – 1345
That’s 4 digits, so if I scan the first 104 digits of pi, sure enough, my phone number occurs 1 time. If I scan 105 digits, it occurs 12 times. For 109 digits, it occures like 98 times. Its clockwork. See below.

altoidnerd@HADRON:~$ pi 10000|grep -o 1345|grep -c 1345
1
altoidnerd@HADRON:~$ pi 100000|grep -o 1345|grep -c 1345
12
altoidnerd@HADRON:~$ pi 1000000|grep -o 1345|grep -c 1345
114
altoidnerd@HADRON:~$ pi 10000000|grep -o 1345|grep -c 1345
1020

Anyway, so the question is how many digits of pi would we need to search through to likely find about 1 or 2 copies of hamlet in the sequence?




So I got hamlet in plaintext from 2 sources. I found that hamlet when compressed from plain text to a tar.gz archive, the average size was 69 KiB. Therefore, (I think?) that means to represent hamlet as just a binary integer, it would have 69 x 8 x 1024 digits = 565248 digits.

To get the number of digits in base 10, we multiply by log_10 (2) +~ .69 so the base ten hamlet would be like a sequence of about ~390,000 digitsm (0-9).

Ok so back to pi. How many digits of pi must we scan to probably find a string of length 390,000? That would be 10^390000 digits. That’s a lot of pi, but pi has got enough digits to spare. We should see approximately 1 copy of hamlet in the first 10^390000 digits of pi.




Even cooler is that if we just increase the power by 1, we should see 10 hamlets; increase the power by 2, and we should get 100 copies of hamlet. So quickly, we end up with infinite hamlets in the digits of pi. And not only hamlet … this argument should would for any book.

[1] This is not too surprising since pi is believed to be a normal number, though this is unproven.



The cost of artificially pumping a low volume altcoin: pumping the alt markets by yourself with the BTC/LTC “pump machine” strategy

For this article we regard ALL prices in crypto-crypto units, and unless otherwise noted, denominated in units of BTC. Therefore bitcoin costs 1, LTC (today) costs ~.009 BTC/LTC, etc…

I have noticed there is a way to burn bitcoin in order to raise the price of an altcoin, assuming low volume, and assuming there is a secondary market, such as LTC, on which the coin is trading. I call it the pump machine. It goes as follows:




Method of spending BTC to temporarily pump the bitcoin price of a low volume coin, which will be denoted SHT:

1) Suppose you only have 1 BTC

2) Buy as much SHT as you can with 1 BTC

Problem seeing this image? Try https://i1.wp.com/i.imgur.com/NasRLSj.png?resize=840%2C387
It doesn’t matter what coin SHT represents in this example, but I choose DRK because I will soon describe trading coins which reach price parity with LTC, and why that can be very good.

3) Go to the LTC/SHT market and sell all the SHT for LTC. Now you have a bunch of litecoins.

https://i0.wp.com/i.imgur.com/XNdOLf0.png?resize=840%2C208
Casually sell the SHT for LTC.

4) Go back to the BTC markets – this time, the BTC/LTC trading floor. Take the LTC and sell it for BTC. You’ll now have a bit less than 1 BTC (most likely).

https://i0.wp.com/i.imgur.com/4Ghz3Ww.png?resize=596%2C362
Get bitcoin back…





5) Now that you hold BTC (perhaps a bit less than 1) go back and pump SHT! Buy .9887 BTC worth of SHT, rinse and repeat.  If the markets are dull enough, you can make it seem, for a while, like more bitcoin than you could possibly spend on SHT is buying the SHT up.  In the end you’ll pay for this deception, but in the short term, it’s a pump machine.

6) Continue the cycle. Watch your bitcoin stash go melt away slowly as you literally pay to pump the price. It’s a bit like a carnot engine.

———————————-

Consider donating to keep altoidnerd.com ad free.  13xdMqkaVKkHKT3ZZx5ikAvQUEkzqpDkDb




Coming soon: the advantage of trading an alt which has reached price parity with LTC. Complete with math.

tytyvm.




It may be time to buy some LTC again. Here’s why. The golden rules for altcoin trading.

Problem with image? See it on imgur here https://i2.wp.com/i.imgur.com/6ibi1z1.png?resize=840%2C428
Litecoin price in BTC on the btc-e exchange, for as long as bitcoinwisdom.com can remember. We are at about all time lows.

This blog post is a glorified (with some images and minor changes) copy pasta of my post on /r/cryptomarkets.

LTC – how low can it go? It might be time to take a shot with LTC for a potential bitcoin profit.

Problem with image?  Go to https://i2.wp.com/i.imgur.com/RL7HENT.png?resize=840%2C431
Past performance is no indication of future…oh whatever. Let’s get some LTC. 1) it’s old 2) its inflation rate is very slow 3) it’s not bitcoin 4) historically speaking, this is an OK price.  5) LTC enjoys special status in the cryptocurrency world as a secondary market, and should always be watched out of the corner of one’s greedy eye.

I have done this with LTC a few times – the best of which was last November. Priced in BTC, it is now near parity with DRK and below .01 … which isn’t far from the price I think I paid for a bunch of LTC right before the boom in November, when I started writing about trading in /r/cryptomarkets with “the golden rules for alt trading.”

One thing that makes LTC different from other scrypt alts is its very slow ditribution – it’s just as slow as bitcoin. To me, that makes it still attractive as a swing trade, because big investors are probably thinking about it. What do y’all think?

BTW, just looked. I decided to buy lots off LTC last year at .008, and it’s not far from this mark. I wrote the golden rules to this sub from a 5-star hotel (I don’t stay in those) thanks to that trade. Good times…

Hexadecimal word games. Not fail = foresee!

If you write “fail” as 0x0FA11, not fail becomes 0xF05EE..or “foresee!”

It’s fun to try and write words in hex, like “deadbeef” of “cafebabe.” If we allow ourselves certain 1337 notations for letters, we can write even more words as Hexadecimal integers like “5ca1ab1e.” Pretty cool!

What is not scalable? Well that’s computable … not 0x5ca1ab1e is 0xa35e54e1. This isn’t a word.

But as I demonstrated above, much fun can be had by taking binary operations on these integers. Not fail is foresee. Can you find any others?



20140729-000507-307862.jpg

20140729-000508-308047.jpg


A precise analysis of an L-network for impedance matching below 3 MHz. The desire for “an ideal” characterization of the circuit parameter space for utility in fabrication by hand. The reduction to a pure mathematics problem.

Introduction

This is a full description of a situation often encountered by scientists in the process of fabrication of the NMR probe. The analysis requires some tedious complex algebra, a bit of circuit theory, and enforces a matching condition. I tried to write this so that one may infer the cirucit theory from context. If there is a problem, just ask.

We will examine the impedance of this reactive L network

View post on imgur.com

Goals of this challenege:

Characterize the parameter space of the variables Cm, Ct, ω, L, r and produce some useful set of tables for lab, in which the relationship between Cm and Ct is known for a given ω L and r. Furthermore to ponder the level of greed allowed. Which parameters limit others? Compare this with what the laboratory reality is.

——

One must always strive for impedance matching conditions to be satisfied, which for us means 50 ohms real. So we must

enforce

Im_Z = 0

Re_Z = R := 50 ohms

—–

These requirements are nasty if you allow the impedance of the coil to have a small (but very physical and influential) real part r

Z_coil = j ω L + r

So the total impedance is

Z_tot = -j / (Cm ω) + Z_coil || Z_Ct = Re_Z + j Im_Z = R + j 0 = 50

Note:

* Z_m is the impedance of the matching cap only
* Z_t is the impedance of the tuning cap only
* the notation A || B means “A parallel B” and A || B = ( 1/A + 1/B)^(-1)

Since Z_coil has a real and an imaginary part, the expression for total impedance is a headache.

So I did it by hand, and with mathematica, and iteratively found what I consider decently short code with reasonably concise expressions. Here we go.

 

—–

Clone the mathematica stuff here

 


git clone https://github.com/Altoidnerd/NMR-Tank-Circuits

 

In which there is a file where I do in fact show the real and imaginary parts of Z_tot are:

real part (which we denote Re_Z…please note the sloppyness. Here w is ω)

Re_Z = r/((r^2 +
L^2 w^2) (r^2/(r^2 +
L^2 w^2)^2 + (T w - (L w)/(r^2 + L^2 w^2))^2))

and imaginary part (Im_Z)


ImZ = (-(1/(M w)) - (T w)/(r^2/(r^2 +
L^2 w^2)^2 + (T w - (L w)/(r^2 +
L^2 w^2))^2) + (L w)/((r^2 +
L^2 w^2) (r^2/(r^2 +
L^2 w^2)^2 + (T w - (L w)/(r^2 + L^2 w^2))^2)))

where we eliminated the need for subscripts but denoting Cm := M and Ct := T.

How do we make useful data from these equations? To answer this, we must first assess what the experimenter can really control.

* coils are hard to wind and have prescibed results. In general, the parameter r is less than 1 ohm, but its actual value is not constant through frequency sadly. It must be treated as such.

* A typical coil inductance L satisfied 1.0 uH < L 30 uH. Intermediate values such as 8 uH tend to be the most difficult to fabricate. A coil inductance of 8uH I find would be useful for lower frequencies, below 3MHz, which are currently causing me problems. It is here the equations become extremely sensitive.

* The capacitance T and M can within reason, be expected to continuously vary between 0 < T,M < 1 nF and even more reasonably if the upper boundary is around 300 pF.

* the frequency is going to satisfy 1 MHz < f < 30 MHz; so ω = 6.28 f so we can say about, that
1 e7 < ω < 3e8

I have made many charts. Got any brilliant ideas?

——–

A typical annoying situation in lab would be:

Drat. To reach the target frequency, we must either replace the capacitors with larger ones,
or exchange the coil with one of larger inductance. Which will take me less time?

I usually do not know in fact. I either make a intuitive guess, prepare some primitive tests, or try a bit of each.

The code in the github repo above will give you some parameter sliders. You can try plotting M, and T vs ω as L and that little tiny r are varied…I still must get to the bottom of these matters, such as, the qualitative effect of increasing r at fixed ω and L etc. How to encapsulate all such desirable relations in a single concise set of diagrams is what I truly seek, from the kind theorists of who may read this.

——-

Final thoughts.

I have studied this problem up down left right…I wrote some interesting special cases down here, but I believe there is more to be known about these equations that could be of service to the designer.

When should I sell my Bitcoin Mining hardware? Bitcoin Mining Hardware Resale Value vs Projected Return

It’s interesting to look back at these “old” numbers from November 2013!

20140605-062924.jpg

Does a single electron moving at constant velocity generate electromagnetic waves?

Nope.

Redditor /u/Mimshot gave the following example:

If an observer is near the path of a small, moving charged particle (unless there’s some special quantum effect I’d love you to tell me about if it exists) the observer will see the E field increase and then decrease and will see the B field ramp from baseline, then reverse direction, which is certainly wave-like. I’m not saying it radiates photons, but I’m wondering if “no, it must be accelerating” is a complete answer.

Is there some quantum effect I’m missing?

 

Image

I “know” immediately there is no radiation in this case, because the theory of relativity tells us we can use a frame of reference in which the particle is stationary. Hence, as a rule, only accelerating particles radiate and thus give rise to traveling waves. Nevertheless, this question did get me to think about what the fields would be like in such a situation. A passing electron would seem to have some time dependent magnetic fields because the “ramp” explanation above, but it cannot be the case since we should know, just “because”, only accelerating charges radiate.

After some thought I came up with the following proof that the magnetic field is static in this case.

Start here

J(r,t) = ρ(r,t)v(r,t) = e δ(r – r’,t)v(r – r’)

v has no time dependence.

The current I is ∫ J d2 x’

I = ∫ d2 x’ e δ(r – r’,t)v(r – r’) = e v = a constant

To find B we use ampere’s law for some closed loop

∫ B dx = μ I = constant

If you’re concerned about the ∂E/∂t term lets look at the full maxwell equation

 x B = μ J + μ ε ∂E/∂t

Applying the operation ∫ d2 x to both sides gives

∫ B dx = μ I + μ ε ∂/∂t ( ∫ d2 x E )

The RHS of the above equation is simpified using gauss law, the integral gives the charge enclosed by a surface

∫ d2 x E = q/ε

so

∫ B dx = μ I + μ ε ∂/∂t ( q/ε )

but ∂/∂t ( q ) = 0

so that term doesn’t change things.

Generating arbitrary sounds from pure functions – mathematica virtual synthesizer

Video example:

An “organized” source is being built here –

Help out:

https://github.com/Altoidnerd/Mathematica-Synth

A picture says a thousand words…so here is the tarball of code fragments:

http://www.phys.ufl.edu/~majewski/Mathematica-Synth.tar.gz

4b1e206b50f68dfa0fb464eb0d06116c Mathematica-Synth.tar.gz

image